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Abstract— Autonomous aerial vehicles, such as NASA’s In-
genuity, enable rapid planetary surface exploration beyond the
reach of ground-based robots. Thus, NASA is studying a Mars
Science Helicopter (MSH), an advanced concept capable of
performing long-range science missions and autonomously nav-
igating challenging Martian terrain. Given significant Earth-
Mars communication delays and mission complexity, an ad-
vanced autonomy framework is required to ensure safe and
efficient operation by continuously adapting behavior based
on mission objectives and real-time conditions, without human
intervention. This study presents a deterministic high-level
control framework for aerial exploration, integrating a Finite
State Machine (FSM) with Behavior Trees (BTs) to achieve
a scalable, robust, and computationally efficient autonomy
solution for critical scenarios like deep space exploration. In this
paper we outline key capabilities of a possible MSH and detail
the FSM-BT hybrid autonomy framework which orchestrates
them to achieve the desired objectives. Monte Carlo simulations
and real field tests validate the framework, demonstrating its
robustness and adaptability to both discrete events and real-
time system feedback. These inputs trigger state transitions
or dynamically adjust behavior execution, enabling reactive
and context-aware responses. The framework is middleware-
agnostic, supporting integration with systems like F-Prime and
extending beyond aerial robotics.

I. INTRODUCTION

Aerial vehicles have revolutionized planetary exploration
by enabling access to scientifically valuable but hazardous
terrain beyond the reach of ground-based robots. NASA’s
Ingenuity Mars helicopter demonstrated the feasibility of
controlled flight on Mars, completing 72 successful flights
despite the planet’s thin atmosphere [1], [2]. However, In-
genuity was a technology demonstrator, designed primarily
to validate powered flight rather than autonomously exe-
cute complex scientific missions. The next-generation MSH
aims to expand these capabilities, conducting long-range
science missions across diverse Martian landscapes while
autonomously navigating unstructured terrain and performing
real-time scientific tasks. Figure [T]illustrates a representative
MSH mission scenario, including takeoff, navigation, and
landing phases, with operational and scientific tasks assigned
at pre-defined waypoints.

Future aerial space missions require a higher level of
autonomy to ensure safe, efficient, and adaptive operation in
partially unknown and unpredictable Martian environments.
Unlike Ingenuity, which followed human-planned trajectories
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Fig. 1. A notional MSH mission plan with structured task execution. The
flight trajectory (dashed line) progresses through takeoff, mission navigation,
and landing, with predefined waypoints (yellow) guiding execution. Tasks
include LandingSiteSearchTasks (red) and ScienceTasks (green). The FSM
state sequence (bottom) is shown in simplified form: each transition reflects
the successful execution of a state’s BT (i.e., root node returns Success).
This schematic omits explicit event triggers to emphasize overall mission
flow.
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over relatively flat terrain, MSH must traverse diverse land-
scapes, requiring adaptive risk management and real-time
decision-making to balance mission objectives with vehicle
safety. These requirements introduce several fundamental
autonomy challenges that must be addressed for successful
aerial exploration:

e Scalable and Modular Autonomy — A structured
control architecture is required for adaptive, reactive,
and deterministic behavior execution. The system must
support explainable decision-making while enabling
efficient synthesis, analysis, and modification of au-
tonomous behaviors to ensure mission flexibility and
aerospace-grade reliability.

« Computational Efficiency & Real-Time Adaptation
— Limited onboard processing requires computation-
ally efficient algorithms that enable real-time decision-
making.

o Adaptive Landing Site Detection — MSH must au-
tonomously search, evaluate, and prioritize landing sites
during flight, ensuring safe emergency landings in haz-
ardous regions. Unlike Ingenuity, which relied on pre-
defined human-designated landing zones, MSH must
continuously detect and maintain fallback landing sites



to ensure safe operations over hazardous and partially
unknown terrain, reducing the risk of mission loss.

o Fault-Tolerant Decision-Making — Deep-space auton-
omy must monitor system health (e.g., battery state)
and trigger appropriate fail-safe behaviors. The system
must autonomously reconfigure, deciding whether to
continue, adjust flight parameters, or abort the mission
based on real-time conditions.

o Human-Guided Task Assignment — Operators define
high-level mission objectives using satellite imagery, but
the system must dynamically adapt task execution based
on real-time scientific discoveries and environmental
conditions, ensuring mission success while maintaining
vehicle safety.

To address these challenges, this paper presents a hy-
brid autonomy framework for deep-space aerial exploration,
integrating FSMs and BTs. The FSM provides structured,
deterministic state transitions, while BTs enable modular,
reactive task execution, allowing the system to dynamically
adapt to system and environmental conditions. This combina-
tion balances high-level mission structure with fine-grained
task flexibility, ensuring robust decision-making under con-
strained computational resources.

The framework operates on an event-driven behavior adap-
tation mechanism, allowing autonomous responses to system
health changes, environmental conditions, and mission task
execution. By continuously monitoring vehicle state, battery
levels, and onboard anomalies, the system triggers adap-
tive mission reconfiguration or fail-safe actions as needed.
To support scalability and reusability, the architecture is
modular, facilitating extensibility, structured testing, and
automated verification while maintaining aerospace-grade
reliability.

Additionally, the framework allows human-guided mission
design, enabling operators to predefine mission objectives
and conditional tasks based on satellite imagery while retain-
ing the system’s ability to execute adaptive tasks based on
real-time discoveries. Designed to be middleware-agnostic,
it supports both ROS-based prototyping and space-grade
middleware such as F-Prime, ensuring applicability across
different robotic platforms and mission scenarios [3], [4].

The primary contributions of this paper include:

o A hybrid autonomy framework that integrates determin-
istic mission execution with reactive task adaptation,
ensuring structured yet flexible autonomous control.

o A two-tier decision-making architecture, where the Au-
tonomy module orchestrates mission execution, while
the Healthguard continuously monitors system health
and triggers adaptive responses.

« A middleware-agnostic implementation, enabling seam-
less integration with ROS-based development and
space-certified middleware (F-Prime) for real-world de-
ployment.

o A modular and scalable architecture, allowing for ex-
tensible behavior control, dynamic task execution, and
robust failure handling across diverse mission scenarios.

o Extensive Monte Carlo simulations and real-world val-
idation, confirming the system’s robustness, resilience
to failures, and ability to autonomously respond to
mission-critical conditions.

II. RELATED WORKS

Several researchers have explored hybrid approaches in-
tegrating FSMs and BTs to leverage the strengths of both
paradigms in autonomous robotic systems. FSMs are well-
established for their deterministic simple design and struc-
tured transitions, making them particularly suitable for high-
level mission phases such as takeoff, landing, and mission-
mode switching. These characteristics are critical in domains
where predictability and formal verification are paramount,
such as space exploration and safety-critical robotics. Despite
their advantages, FSMs face limitations when dealing with
complex, dynamic, or concurrent tasks. As state complexity
grows, FSMs become difficult to maintain, leading to state
explosion and reduced scalability. To address these limita-
tions, BTs have emerged as a powerful alternative due to their
modularity, hierarchical structure, and support for concurrent
task execution. Unlike FSMs, which rely on rigid transitions
between states, BTs encapsulate behaviors in a structured
manner that allows for flexible control flow, efficient failure
handling, and reactive decision-making [5], [6], [7], [8], [9].

A key motivation for using FSMs at the high level while
employing BTs within states is the need for structured
decision-making alongside dynamic execution. FSMs ensure
strict, deterministic transitions between well-defined mission
phases, thereby enforcing mission-critical constraints and
state-dependent operational safety. In contrast, BTs provide
reactivity and modularity within each state, allowing the
system to adapt to real-time conditions without modifying
the global state structure. This hybridization reduces the
complexity of state transition management while maintaining
the benefits of adaptable task execution [10].

While BTs offer a modular approach to task execution,
their recursive evaluation model inherently introduces hidden
state dependencies and unnecessary computational overhead
[11]. Although backchaining BTs can mitigate some of
these issues, it significantly increases mission design com-
plexity—an approach that is currently impractical given
the constraints and mission-critical nature of aerial space
exploration. In contrast, FSMs provide an event-driven ex-
ecution model with lower processing time per tick, making
them more suitable for mission-level transitions where strict
transition logic are necessary [7].

Furthermore, hybrid architectures such as Aerostack2 have
explored multi-agent aerial robotics frameworks that inte-
grate BTs with FSMs. However, their reliance on ROS-
based middleware, services, and actions introduces complex-
ity unsuitable for space-constrained environments. Space-
grade autonomy frameworks, such as those built on F-Prime,
require lightweight, computationally efficient, and determin-
istic execution models. The hybrid FSM-BT approach aligns
with these requirements by ensuring robust, event-driven
high-level state management while allowing for adaptive and



modular behavior execution at lower levels [12], [13], [14],
[15], [16].

A few studies have been published specifically for space
applications focusing on task management and behavior
control of robotic systems. For space exploration, NASA’s
Jet Propulsion Laboratory (JPL) developed frameworks like
TRACE, which uses Business Process Model Notation
(BPMN) and ROS actionlib to coordinate robotic behavior
[17]. However, ROS limitations—such as inadequate real-
time performance, lack of deterministic behavior, and insuf-
ficient fault tolerance—make TRACE unsuitable for space-
grade applications. Another relevant framework, MEXEC
(Multi-mission EXECutive), was initially developed for or-
bital spacecraft, such as the Europa Lander mission [18].
MEXEC excels in re-planning and task-net scheduling but
is less suited for aerial vehicles that require rapid responses.
The framework relies on an accurate model of its resources,
such as battery voltage, which is problematic for multi-rotor
vehicles with nonlinear and complex power consumption.
Moreover, if the framework has to re-plan an action, it blocks
subsequent adjustments for a predefined period. While this
blocking is not critical for ground-based robots like CADRE
(which can remain stationary while waiting), it limits the
responsiveness of the framework, which is essential for aerial
vehicles that need to react quickly in dynamic environments
[18], [19].

While several mission control frameworks exist, none are
specifically designed for autonomous aerial operations on
planetary bodies like Mars. Existing solutions often lack
the flexibility for complex missions or add unnecessary
complexity. Many rely on ROS, making them incompatible
with space systems that require a streamlined, middleware-
agnostic approach to switch quickly to F-Prime.

III. AUTONOMY FRAMEWORK

Executing a complex mission autonomously requires a
combination of different software and hardware elements,
as can be seen in Figure 2] This subsection focuses on the
software elements while the hardware side will be discussed

in Chapter

A. System Architecture

The mission autonomy framework, including the Auton-
omy and Healthguard modules, manages mission execution
and ensures system safety. Prior to the operation, the Auton-
omy necessitates a mission plan generated with the mission
planning tool on the ground station computer. This tool
allows users to create specific science and operational tasks
at predefined waypoints, instructing the Autonomy to execute
tasks at designated locations, as illustrated in Figure |1} The
FSM-BT-based Autonomy carries out the mission plan, guid-
ing the helicopter’s behavior. It sends high-level commands
to the PX4 Autopilot on a commercial flight controller to
manage navigation and task execution. Simultaneously, the
Healthguard module consistently monitors crucial parameters
such as battery levels, actuator status, and the confidence
of the state estimator’s estimations. In case of anomalies,
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Fig. 2. System architecture for autonomous mission execution. The Auton-
omy module orchestrates mission behavior, with the Healthguard monitoring
system health and reporting anomalies. The Navigation stack provides
real-time position updates using state estimation, map-based localization,
structure from motion, and landing site detection. State estimates, including
pose and velocity, are fed into the PX4 EKF2 for low-level control, while
landing site management is handled by the Autonomy.

the Healthguard notifies the Autonomy module, which then
takes requisite actions to maintain the vehicle’s safety and
operational continuity. The decision-making process within
the framework uses the outputs from other software modules
in the stack.

The software stack includes xVIO, a visual-inertial
odometry-based state estimator that provides pose estimation
of the vehicle during flight [20]. To ensure accurate global
navigation during long-range missions and account for drift,
a map-based localization (MBL) algorithm is utilized. MBL
corrects the vehicle’s position in a global reference frame
using pre-recorded maps from the Mars Reconnaissance
Orbiter [21]. Furthermore, the system incorporates Structure
from Motion and Landing Site Detection (LSD) modules,
enabling real-time detection of safe landing sites using a
monocular camera. These modules assess terrain roughness,
slope, and available space to ensure a safe landing in case of
an emergency or planned landing scenario [22], [23], [24].
The Autonomy uses the landing sites and pose estimates to
coordinate the helicopter’s navigation and behavior through-
out the mission.

B. Mission Autonomy

The Autonomy is structured around modular components
that provide flexible, adaptive control for autonomous aerial
missions. The core elements of the framework illustrated in
Figure [3] include the Coordinator, which manages system
initialization and execution, the Finite State Machine, and
Behavior Tree for decision-making and task execution, as
well as the Connector, which serves as the interface for com-
munication with external systems. Supporting modules like
the ParameterServer, GlobalBlackboard, and MissionParser
provide the system’s configuration, mission planning, and
data management capabilities.

The Coordinator serves as the primary interface in the
Autonomy, initializing core and support modules, managing
asynchronous execution by running the FSM, and processing
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Fig. 3. Mission autonomy framework with core software components
and data flow. The Coordinator oversees execution, managing the FSM for
deterministic mission phases and BTs for flexible, reactive task execution.
The Healthguard monitors system health, detecting anomalies in actuator
status, battery levels, and estimator confidence, and sends external events
to the Coordinator, triggering adaptive responses. The Connector enables
middleware-agnostic communication, facilitating data exchange between the
autonomy system and PX4 for mission control. This architecture ensures
robust autonomy, real-time adaptation, and compatibility with ROS and
space-grade middleware like F-Prime.

events. Events are forwarded to the FSM, ensuring that state
transitions occur under specific conditions and priorities.

The Finite State Machine manages mission states and
transitions using a state transition table. Each state repre-
sents a mission phase — Idle, Init, Takeoff, Mission, Land,
Terminate or EmergencyLand — and is implemented as
a separate class derived from an abstract base state class,
ensuring extensibility for new mission profiles or vehicle
configurations. Transitions are triggered deterministically
by predefined events, which may originate from behavior
trees returned node status or external sources, such as
the Healthguard. External events such as BatteryLow or
BatteryCritical are emitted by the Healthguard when
predefined thresholds are violated. Each state defines explicit
transitions for a subset of such events. If an event occurs
without a defined transition, it is treated as a self-transition
to the current state, maintaining execution flow. The FSM
is validated offline to ensure that all states are reachable
and that from each state, a path to a final state exists. This
guarantees deadlock freedom and ensures system stability
and predictability.

Each state’s logic is governed by its corresponding Be-
havior Tree, which the FSM activates based on the mission
phase. BTs dictate the robot’s actions during each phase
and are generated by the Behavior Tree Factory, which
links registered nodes for that state. The FSM can execute,
pause, abort, or reset BTs based on mission needs. BTs are
asynchronously ticked, and the node status (Success, Failure,
or Running) propagates to the FSM. This interaction between
FSM and BT enables high-level deterministic control while
allowing for reactive behavior at the task level, adapting
dynamically to real-time conditions.

A key feature of the FSM-BT architecture is its event-
driven nature, where events arise from internal and external

sources. Internal events, such as Success or Failure, which
represent the BT status and are required by all states, trigger
state transitions. Additionally, more specific internal events,
like “landing site search failed” after multiple retries, can
be defined to handle particular mission conditions. External
events, such as a Healthguard or other external software
running in the stack, may report critical system parameters
or other conditions that could cause a behavior change. The
Healthguard simplifies BTs by reducing the need for repeti-
tive condition nodes, which would otherwise add complexity.
The Coordinator processes all events and determines when
a state transition is necessary, enabling the system to adapt
dynamically without manual intervention—such as triggering
an emergency landing due to critical battery levels.

The Behavior Tree structure provides flexible control over
low-level behaviors. Control nodes (Sequence, Fallback, Par-
allel) manage task execution order, while decorator nodes
(retry, timeout, inverse) modify the behavior of their child
nodes. Leaf nodes represent action and condition nodes that
execute specific actions or check conditions. The modularity
of BTs allows user-defined action and condition nodes to be
reused across multiple states, enhancing flexibility. Nodes
can be dynamically adjusted—for example, marking nodes
as skipped during the next tick—allowing BTs to adapt
in real-time without state transitions. Within BTs, fallback
nodes provide a natural recovery mechanism by redirecting
execution when leaf nodes fail. Additionally, BTs can di-
rectly trigger state transitions by notifying the state machine
through predefined internal events, such as a task failure.

The Connector decouples the autonomy system from
specific middleware or hardware, providing a middleware-
agnostic interface that facilitates communication with exter-
nal systems like the PX4 flight controller, xVIO State Esti-
mator, and Healthguard. This interface ensures seamless data
exchange and real-time mission command processing. The
Connector allows integration with different platforms, such
as ROS, F-Prime, and PX4, without altering the core mission
logic, offering flexibility across hardware architectures. In the
current implementation, ROS 1, MAVROS, and PX4-specific
commands and interactions are supported.

Figure [ illustrates the core FSM-BT control structure,
showing the primary states: Idle, Init, PreChecks, Takeoff,
Mission, Land, EmergencyLand, and Terminate. Addition-
ally, it shows the behavior trees corresponding to the Takeoff
and Land states. Before any action is taken, the BT first
checks the vehicle’s health status. If the check is passed, the
Takeoff behavior tree will execute the nodes of the fallback
sequence node (orange) on the left. The first task is setting
the PX4 mode to Offboard and then arming the vehicle. Once
the vehicle is armed, the actual Takeoff action is executed,
controlling the vehicle to ascend using lateral position control
and vertical velocity control. A timeout is applied to the
takeoff action node, which is dynamically calculated based
on the vehicle’s velocity and distance to the takeoff waypoint.
If any of these leaf nodes fail, the nodes of the fallback
sequence node on the right will be executed. The Descend,
Land, and Disarm actions are executed sequentially. If one
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predictable state transitions with dynamic, condition-driven task execution.

of these actions also fails, the behavior tree will return a
Failure status, causing a transition to the EmergencyLand
state. Entering the Land state, after a successful mission
execution (which involves completing the mission plan), the
vehicle attempts to land at the closest identified landing site.
A search pattern is flown at a lower altitude if no landing site
is available to locate suitable landing sites. Once a landing
site is found, the system targets the most confident site and
proceeds to land. Again, if the central fallback sequence
nodes are failing, a transition to the EmergencylLand is
executed.

IV. INTEGRATION AND TESTING

During the development and evaluation phase of the high-
level Autonomy software, extensive simulations and flight
tests were conducted to refine, extend, and verify the frame-
work’s robustness and functionality. This section presents the
experiments and final results achieved in this research.

The hardware setup for our experiments included the
ModalAI Sentinel drone, which was equipped with advanced
sensors for GPS-denied navigation and landing site detection.
A Lightware Laser Range Finder (LRF) was integrated
with a downward-tilted 45-degree RGB and stereo cameras.
The core of the drone’s system is the VOXL2 onboard
computer, which communicates with the Pixhawk 6C Mini
flight controller via a UART-to-USB connection. While the
PX4 ran on the flight controller and the mission planning tool
on the ground station, all presented software, including the
mission autonomy framework, was executed on the VOXL2.
Additional components included a telemetry antenna and
a voltage measurement sensor, which provided real-time
telemetry data to the ground station computer. The ground
station was also used to upload flight plans and adjust flight

parameters, facilitating the execution of different autonomous
flight missions orchestrated by the Autonomy and ensuring
safety during experimental flights.

A. Monte-Carlo Simulations

To systematically evaluate the robustness of the autonomy
framework, two major Monte Carlo simulation series were
conducted in Gazebo Garden with integrated PX4 firmware,
ensuring close alignment with real hardware execution. The
simulations tested both the Autonomy Module, responsible
for orchestrating mission execution and reacting to system
events, and the Healthguard Module, which continuously
monitors critical parameters and generates discrete event trig-
gers for adaptive decision-making. This structured approach
allowed for an independent assessment of both mission
control and system health monitoring.

The simulation environment (Figure5)) was generated from
real-world aerial mapping data processed in Blender, creating
a high-resolution, georeferenced 3D terrain model. While
Gazebo does not provide fully photorealistic rendering, it
accurately replicated sensor inputs, flight dynamics, and
terrain conditions, making the tests highly representative of
field conditions.

The first Monte Carlo simulation series evaluated the Au-
tonomy module’s ability to react to system events, ensuring
seamless coordination between behavior trees, finite state
transitions, and navigation execution. Across 170 random-
ized trials, the system encountered events such as battery
depletion, state estimation faults, and failure to detect safe
landing sites, testing its ability to dynamically reconfigure
mission execution while maintaining safety constraints. The
autonomy consistently performed correct state transitions,
successfully handling all predefined failure scenarios. The



Fig. 5. Simulation environment in Gazebo replicating real-world field
conditions, integrating a high-fidelity drone model with onboard sensors
identical to the real system. The terrain was generated from aerial mapping
data and processed in Blender to create a high-resolution, georeferenced
3D environment, ensuring accurate terrain representation. While Gazebo
does not provide fully photorealistic rendering, this setup enables realistic
physics-based testing of the autonomy framework, allowing for meaningful
validation of mission-critical behaviors, perception algorithms, and sensor-
driven decision-making before real-world deployment.

event distribution and corresponding state transitions are
summarized in Table [

The first Monte Carlo simulation series evaluated the Au-
tonomy Module’s reaction to system events, verifying correct
state transitions and dynamic mission adaptation. Across 170
trials, random health events were injected during a fixed
mission plan to evaluate the system’s response to various
conditions, particularly those reported by the Healthguard.
Events such as BatteryLow triggered a landing, including a
landing site search task. In more severe cases, like Battery-
Critical or StateEstimatorFailure events, the system initiated
an emergency landing with a rapid descent. The results
consistently demonstrated the system’s ability to correctly
handle all predefined events and execute appropriate state
transitions, ultimately reaching the final state, Terminate.
Table [ shows the distribution of health events and the FSM
states in which they occurred. Furthermore, the Healthguard
was tested in isolation to assess its robustness in detecting
conditions such as critically low battery levels or estimation
inconsistencies. Simulated input values were used to trigger
Healthguard events, confirming its ability to reliably detect
system anomalies.

The second simulation series validated the Healthguard
Module, ensuring accurate detection and timely reporting
of system anomalies while assessing its impact on overall
mission robustness. Across 100 Monte Carlo trials, various
failure conditions, including battery degradation, sensor fail-
ures, and degraded state estimator confidence levels, were
introduced to evaluate detection accuracy, event propagation
latency, and differentiation between transient anomalies and
mission-critical conditions. The Healthguard achieved over
98.5% detection accuracy, reliably identifying faults, and
enabling proactive mission adjustments. These trials also
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Fig. 6. Distribution of various mission outcomes across different distance
categories. Each bar represents a specific range of distances, indicating the
number of missions completed under nominal conditions (blue) and ended
with an emergency landing (orange). No mission ended with a crash (red).

examined the interplay between mission planning, system
health monitoring, and emergency handling, with randomized
waypoint distributions (5-15) and flight distances up to 1.2
km. As expected, longer mission durations increased the
frequency of BatteryLow and BatteryCritical events, leading
to adaptive landing site searches, trajectory modifications,
and failsafe activations. Figure [6] illustrates the correlation
between flight distance and emergency landings, confirming
the autonomy framework’s ability to dynamically reconfigure
mission execution while prioritizing vehicle safety.

Using high-fidelity simulations and controlled event in-
jections, these tests confirmed that the autonomy framework
reliably executes state transitions, enforces safety constraints,
and dynamically adapts to real-time mission conditions. The
ability to coordinate adaptive mission behavior with system
health monitoring ensures robust, scalable, and resilient
autonomous operations for deep-space aerial missions.

B. Field Tests

In addition to the simulations, the Autonomy was tested
on hardware. As already mentioned in Section [[V] a mod-
ified ModalAI Sentinel drone was used. Initial flights were
performed using a tether, to ensure safety while verifying
that the system behaves as expected. After verifying that the
drone’s behavior matches the simulation results, anomalies
were simulated during flight. For that, each health event

TABLE I
DISTRIBUTION OF 170 SUCCESSFUL SIMULATION RESULTS
CATEGORIZED BY SPECIFIC EVENTS RANDOMLY TRIGGERED ACROSS
DIFFERENT STATES OF THE FSM.

Event Init | Takeoff | Mission | Land | Tot.
StateEstimatorFailure 7 7 8 9 31
BatteryLow 10 8 6 9 33
BatteryCritical 5 8 5 7 25
EmergencyBattery 6 7 6 8 27
NoLandingSitesFound 5 8 5 7 25
LandingSiteChecks 7 9 7 6 29
Total 40 47 37 46 170




listed in Table [I| was sent manually to the drone. To verify
consistency, five flights per health event were conducted. In
all 30 flights, the drone responded adequately to every health
event.

Following these tethered tests, the helicopter was put into
a more realistic setting. Field tests were performed in the
Arroyo Seco, a dessert-like terrain right outside of JPL. The
goal of the field tests was to fly a mission fully autonomously.
Multiple flights were conducted whereas one of them is
shown in Figure [7] The performed flight consisted of 10x10
m square at an altitude of 10 m. The drone successfully
demonstrated autonomous takeoff, navigation and landing.
For simplicity, only xVIO and Autonomy were used for that
test.

C. Autonomy Performance and Reliability Evaluation

Autonomy performance was evaluated based on key met-
rics, including control loop execution time, latency, memory
consumption, and scalability. The average control loop period
on the VOXL2 was 2.2 ms, while latency between events
and state transitions remained at 1.1 ms, ensuring prompt re-
sponses to external triggers. During flight tests, the VOXL2’s
CPU load averaged 6.5%, reflecting efficient resource usage.
Memory consumption remained stable at 24 MB through-
out mission execution, with minimal increases during state
transitions, even as behavior tree complexity grew. Fault
tolerance was tested through 270 Monte Carlo simulations
and 30 test flights, where random health events—such as
inconsistent state estimation or low battery—were triggered
in different states. Each event was simulated at least three
times per state, both in the Gazebo simulation environment
and on the Sentinel drone. The autonomy system success-
fully handled all failures, transitioning to predefined fail-
safe states. Additionally, random internal (e.g., BT Success,
Failure) and external health events (e.g., low battery) were in-
troduced to validate state transitions and fail-safe responses.
The framework exhibited 100% correctness in state transi-
tions and maintained stability when encountering undefined
events, with no crashes or incorrect transitions. The system
consistently achieved 100% mission completion, responding
reliably to all events, including those that triggered failsafe
behaviors, thus demonstrating its ability to execute long-
range autonomous missions under diverse conditions.

V. CONCLUSION AND FUTURE WORK

Initially developed for the Mars Science Helicopter mis-
sion concept, the hybrid autonomy framework has proven
its robustness and adaptability in various real-world ap-
plications, including a search and rescue drone project.
The framework exhibited reliable performance across 400
development flights and competition runs, with no software
failures or unexpected behavior, highlighting its resilience
and potential for broader robotic and aerospace applications.

This research presents a flexible and middleware-agnostic
framework that combines FSM and BT policies to enable
sophisticated yet deterministic decision-making and high-
level behavior control. Autonomy can execute reactive tasks
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2 0.0m 10.0m 10.0m
3 10.0m 10.0m 10.0m
4 10.0m 0.0m 10.0m
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2 XY Trajectory
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Fig. 7. Autonomy and xVIO test flight in the Arroyo Seco, Pasadena,

CA. Figure 1 provides an overview of the test site, including the predefined
waypoints and the executed mission. The image shows also the drone in
flight during testing. Figure 2 presents the recorded flight data, comparing
the estimated trajectory against the desired trajectory in both the X-Y and
X-Z planes, highlighting the accuracy of the state estimation and mission
execution over time.

while dynamically responding to real-time conditions, in-
cluding handling emergencies such as rapid landings. A
key strength of the framework is its Connector, which
facilitates modular communication with diverse algorithms
and supports seamless integration with various middleware
and hardware platforms, making the system highly exten-
sible across different robotic applications. The deterministic
decision-making architecture of the FSM, combined with the
reactivity and flexibility of the behavior trees, ensures robust
mission execution with minimal complexity, allowing for
precise control over the system’s behavior while remaining
adaptable to unforeseen circumstances.

This work lays the foundation for future autonomous
systems in extraterrestrial and other environments, offering
a versatile and scalable software architecture that can be
adapted to various mission requirements and behavior pat-
terns.

Future directions include dynamically triggering tasks
based on real-time inputs, integrating auxiliary algorithms
(e.g., scientific classifiers) to optimize mission strategy, and
improving the behavior tree framework with graphical tools
for easier configuration. Expanding to multi-agent capabili-
ties will enable complex, cooperative missions that require
coordinated decision-making among multiple autonomous
agents. Additionally, implementing robust checks will ensure
that the FSM and BT configurations are designed to always
terminate in a valid final state, further improving system
predictability and stability.
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